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Tossing the dice is commonly considered a paradigm for chance. But where in the process of throwing a
cube does the randomness reside? After all, for all practical purposes the motion is described by the laws of
deterministic classical mechanics. Therefore the undisputed status of dice as random number generators calls
for a careful analysis. This paper is an attempt in that direction. As a simplified model of a dice a barbell with
two marked masses at its tips and only two final positions is considered. It is shown how, depending on initial
conditions and the degree of dissipation during bounces, the outcome is only more or less unpredictable: the
system is not truly random but pseudorandom—even under conditions where it appears to be random.
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I. INTRODUCTION

Dice throwing is perceived as epitomizing randomness.
Everybody is familiar, from childhood on, with cubic dice as
part of board games such as backgammon. Sometimes, such
as in role-playing games, other dice geometries are used,
ranging from 7-sided, over 34-sided, to even 100-sided dice
�1�, but all of them are assumed to be perfect random number
generators. When Einstein wrote in a letter to Born �1926� “I,
at any rate, am convinced that He does not play dice” �2�,
thereby objecting to the view that the basic laws of nature
incorporate randomness, he took it for granted that dice
tossing is a random process. Starting in the mid-seventies,
the theory of dynamical systems introduced the notion of
deterministic chaos to refer to the observation that random-
ness may be generated on the basis of purely classical me-
chanics. Hence it became conceivable that dice throwing
may at the same time be described by perfectly deterministic
laws, and yet produce sequences of random numbers.

However, the implementation of this idea in terms of ex-
plicit calculations has never been carried out. In the literature
only a few scientifically motivated experiments to test fair
dice and coins have been reported, see �3� for a recent re-
view. Theoretical work has mainly focused on simulations of
simple models with two-sided or four-sided dice. Vulović
and Prange studied the basins of attraction of the two pos-
sible final configurations of a homogeneous rod �4�; Feldberg
et al. focused on a rolling square and the corresponding final
states for varying initial conditions �5�; Ford and Kechen
studied throws of a homogeneous disk �6,7�, and the edge
landing of a coin was modeled by Murray and Teare �8�.

General experience with chaotic dynamical systems as
well as simple home experiments support the expectation
that the degree of randomness in dice throwing depends on
the circumstances, notably on initial conditions. Rarely is
motion completely chaotic: from the point of view of phase
space geometry, regions of regular motion are more or less
intimately mixed with regions of chaos; from the dynamical
point of view, chaos is a long-term phenomenon, i.e., it needs
time to become manifest. In the present analysis we demon-
strate these facts, qualitatively and quantitatively, with a

simple model which admittedly is only a caricature of cubic
dice, yet we believe it shows the essential features of dice
throwing.

II. MODEL

A. Theoretical setup

The first simplification is a reduction from the cube’s six
degrees of freedom �three each for translation and rotation�
to three: we think of throwing the cube with one of its axes
parallel to the floor, in such a way that it can only bounce on
four edges and eventually comes to rest on one of only four
faces. This would be equivalent to considering a square in a
plane �5�. If we assign the same numbers to opposite sides of
the square, the motion can effectively be modeled by a bar in
the plane which has one rotational and two translational de-
grees of freedom, bouncing off the floor with either of its two
ends. In the final state, the bar lies flat on the floor, with one
or the other of the two tips lying to the right. The bar might
be a homogeneous rod �4�, but we choose to model it as a
barbell, i.e., a massless rod with two point masses at its tips.

A general initial condition involves the position and ve-
locity of the barbell’s center of mass as well as its angle with
respect to a fixed �horizontal� line and the corresponding
angular velocity. Assuming that there is no horizontal force
�gravity pulling downward and no horizontal momentum
transfer during a bounce off the floor�, the horizontal motion
is uniform and may be ignored as irrelevant. This leaves us
with only a vertical coordinate and the angle, plus the two
corresponding velocities. As the center of mass reaches a
maximum height between any two bounces, a complete set
of trajectories can be characterized by three initial condi-
tions: altitude of center of mass at zero vertical velocity,
angle velocity, and angular velocity, see also Fig. 1. In the
following analysis we fix the initial altitude and consider
arbitrary combinations of initial angles and angular velocities
in order to allow for two-dimensional renderings. The com-
plete picture would involve a variation of the initial height as
well.

The motion consists of two parts. The first is the combi-
nation of a free fall of the center of mass, and uniform rota-
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tion of the barbell. The second part is the reflection off the
ground when one of the two masses hits it. While the first
part is classroom simple, the reflection law needs some at-
tention, especially if we are to include dissipation in that
process �see the Appendix for details of the bouncing with
dissipation�. Suffice it here to say that we introduce a friction
parameter f to describe the reduction in vertical velocity of
the bouncing mass, compared to what it would be in an elas-
tic reflection. After the bounce, a new phase of free falling
begins, with a positive upward velocity of the mass that hit
the floor. This phase in turn ends when one of the masses
touches the ground, and so on until the bar comes to rest
lying flat.

B. Complexity

Even though these two alternating parts are extremely
simple, their repetition may imply chaos �the situation is
reminiscent of the “Galilean chaos” discussed in Ref. �9��.
Let us now analyze its extent and nature, see Fig. 2. To this
end we scan the plane of initial conditions at given height
�h=0.6 in dimensionless units�, angles �horizontal axis� rang-
ing from 0 to 360 degrees, and angular velocities �vertical
axis� from −7 to +7. Each point is given a color according to
which final state is reached by the trajectory starting with
these initial conditions: yellow if the final state is 0, cyan if it
is 1 �see Fig. 1�. In addition, the color code �inserted in the
upper right of each picture� also reflects the number of
bounces a trajectory performs before its energy is no longer
sufficient for a turnover to the other configuration. This num-
ber depends strongly on the friction parameter. With low
dissipation �upper left picture� a large number of bounces
may be necessary before the final fate is determined. At high
dissipation �lower right picture� the final state is reached
much earlier.

The individual pictures, except Fig. 2�a�, contain white
lines which separate regions of different orbit classes as de-
fined in Fig. 1, up to symbol lengths 4. Some of the classes
are indicated by red symbols. In Fig. 2�a� we exhibit the

points P1 and P2 which correspond to initial conditions
where the barbell starts upright with zero angular velocity.
The trajectories starting from there are not attracted by any
of the two final states; instead, while losing energy in every
bounce, they approach the unstable equilibria where the bar-
bell stand upright on the floor, “not knowing” which way to
fall. Of course this situation is unstable against small
changes in the initial conditions, but the picture shows how
these points are the organizing centers of the system’s basins
of attraction. The white lines emanating from P1 and P2 be-
long to the stable manifolds of the upright configuration, i.e.,
they represent trajectories which end up in the unstable equi-
libria. Clearly these lines mark the boundaries between the
basins of attraction of the two final states, the stable equilib-
ria. The white lines in Figs. 2�b�–2�d� are extensions of these
lines. The red lines in Fig. 2�a�, on the other hand, belong to
the unstable manifolds of the upright configurations, i.e.,
they represent trajectories which would approach an upright
configuration in backward time. The intersection points P3
and P4 of these lines are heteroclinic points; corresponding
orbits originate from one upright configuration �at high ini-
tial energy� and up in the other �at rest�. The figure shows
that for small dissipation, the yellow parallelogram formed
by points P1 through P4 �together with its cyan partner where
the barbell is turned over� roughly delineates the border be-
tween predictability �inside� and nonpredictability �outside�.
With higher dissipation, the regions of regular behavior,
hence of predictability, extend into regions of higher energy.
Notice that increasing angular velocity at fixed initial altitude
means higher total energy.

The pictures tell us that in order to observe randomness in
the barbell’s final states, we must start with sufficient initial
energy, and preferably close to an upright configuration, so
that several bounces with appreciable changes in orientation
can take place before the final state is determined. This ran-
domness, however, is not complete in the sense that we
might zoom into the picture and find the basin boundaries
entangled on all scales. Instead, the dissipation rather limits
the development of chaos, or fractal geometry in phase
space. This means that if a skilled player’s hand can repro-
duce initial conditions with a small but finite margin, there is
a good chance the desired final state will be attained. For
more details on these matters, and an alternative representa-
tion of the system’s phase space in terms of Poincaré sur-
faces of section, we refer to the Appendix.

III. CONCLUSIONS

In order to investigate the nature of pseudorandom chaotic
behavior in the throwing of a dice we considered a minimal
model which has only two final states rather than six. The
system is sufficiently simple to allow for a detailed analysis
of phase space structure with respect to position and extent
of different types of motion, for which we introduced a sym-
bolic orbit classification. The division of phase space into the
basins of attraction of the two final states was represented in
terms of sections �initial conditions at fixed height� where the
geometry of the basin boundaries can be conveniently visu-
alized. A particular organizing role for an understanding of
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FIG. 1. �Color online� Schematic view of the model �left� and
example of a trajectory and its symbolic characterization �right�. A
bounce is labeled by 0 when mass 1 is to the left of mass 2. The
symbol for a bounce is 1 when mass 1 is to the right of mass 2.
Note that this code does not reveal which ball is bouncing. When
during a flight the barbell passes the vertical orientation clockwise
we denote the passage by the letter R. A counterclockwise passage
is denoted by L. No further symbol is added to the symbol sequence
when the barbell has too little energy for vertical passages, that is,
when the motion is restricted to either infinitely many type-0 or
type-1 bounces. In addition, we omit repeating symbols at the end
of the code and do not consider the �singular� case of a vertically
hopping barbell with vanishing angular momentum. The symbol
code for the example is L0L1R00L1.
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the system’s complexity could be attributed to the stable and
unstable invariant manifolds of the unstable equilibria, and
their intersections. Using these features, we were able to
roughly delineate a border between orderly regions of pre-
dictable behavior and chaos where the dependence on initial
conditions is sensitive. This is particularly true in the limit of
low dissipation, or almost Hamiltonian dynamics. For realis-
tic friction strengths f �0.5 �4� the typical number of
bounces before the barbell can no longer change its orienta-
tion is about five bounces, as may be seen in Fig. 2�d�.
Hence, if a dice throw may be taken as a random number
generator this is primarily because of the gambler’s inability

to reproduce initial conditions sufficiently well to ensure
similar trajectories—and not so much because of an inher-
ently strongly chaotic dynamics.

APPENDIX

Here we provide detailed information about our model
and the numerical findings.

1. Model

We consider a barbell in the two-dimensional �x ,y� plane,
see Fig. 1. Two point masses are connected through a mass-
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FIG. 2. �Color online� Final state diagrams for four friction values: �a� f =0.05, �b� f =0.1, �c� f =0.2, �d� f =0.4. Each diagram displays,
in the plane of initial angles and angular velocities, the final outcome of the throw when the barbell has been dropped from an altitude
h0=0.6 above ground. Yellow �gray� points indicate final state 0: mass 1 is to the left of mass 2, cyan color �gray� marks points with final
state 1: mass 1 is to the right of mass 2. The brightness of the color �grayscale� codes for the number of bounces before the barbell can no
longer change its orientation; the darker the color �grayscale� the more bounces the system needs to fall below the critical energy value
Ec=0.5. Black regions represent initial conditions where the barbell ends up standing almost upright on the ground, close to an unstable
equilibrium state. �a� Friction strength f =0.05 with scales and axes �which are same in all other diagrams�. The diagonal lines indicate the
stable �white� and unstable �red and/or gray� directions of the linearized Poincaré map at the hyperbolic points P1 and P2; they are tangent
in these points to their stable and unstable manifolds. Their intersections at points P3,4, together with P1,2, define a parallelogram which
approximately delineates the separation of order from chaos. �b� Friction strength f =0.1; the white lines are boundaries of orbit type classes
with symbol length up to 3. �c� f =0.2; symbol sequences of the simplest orbit type classes are displayed. �d� f =0.4, which corresponds to
a realistic friction strength.
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less rod of unit length l=1. In the derivation here, we con-
sider the general case where the two masses m1 and m2 are
not necessarily equal. Let us denote their positions by �x1 ,y1�
and �x2 ,y2�, respectively. We assume gravity to pull in the
negative y direction, the floor being at y=0.

The barbell has three degrees of freedom, two for trans-
lation and one for rotation. A convenient representation is
given by the center-of-mass coordinates �x ,y� and the angle
� �see Fig. 1�. Their connection to the coordinates of the
mass points is

x1 = x + �2 cos � , �A1�

x2 = x − �1 cos � , �A2�

y1 = y + �2 sin � , �A3�

y2 = y − �1 sin � . �A4�

The �1,2 are the mass ratios �1=m1 / �m1+m2� and �2
=m2 / �m1+m2�. Since �1+�2=1 we have only a single mass
parameter. By choosing appropriate dimensionless units, all
other parameters may be scaled away. The Lagrangian then
reads

L =
1

2
�ẋ2 + ẏ2� +

1

2
�1�2�̇2 − y . �A5�

In addition we might consider a reflecting potential at the
floor, but the reflections at y1=0 and y2=0 will be given
special attention in the following derivation of the bounce
map. Note that above ground no force acts in the x direction,
and we assume that also upon reflection there is no momen-
tum change in x direction; hence ẋ is a constant which we
take to be 0, together with x. The system has effectively only
two degrees of freedom, y and �.

As long as the barbell falls freely, energy

E =
1

2
ẏ2 +

1

2
�1�2�̇2 + y �A6�

and angular momentum L=�1�2�̇ are conserved. But what
happens during reflection?

2. Bounce map with dissipation

Consider the case that the first particle hits the floor, y1
=0 or y=−�2 sin �, at an angle ����2�. It is then con-
venient to use the coordinates y1 , ẏ1 instead of y , ẏ, and to
express the energy �A6� as

E =
1

2

�1

�1 + �2 cos2 �
ẏ1

2

+
1

2
�2��1 + �2 cos2 ����̇ −

cos �

�1 + �2 cos2 �
ẏ1�2

− �2 sin � . �A7�

The expression

�̇̃ ª �̇ −
cos �

�1 + �2 cos2 �
ẏ1 �A8�

can be shown to be proportional, at given �, to the tangential
component of the momentum which does not change during
the collision. Therefore we have the reflection conditions

��, �̇̃� � ���, �̇̃� = ��, �̇̃� . �A9�

As to ẏ1, consider first the elastic collision where E is con-
stant. Then Eq. �A7� tells us that at given �� , �̇̃� and E there
are two possible values of ẏ1 which differ only in sign; the
negative value corresponds to the incoming trajectory, the
positive to the outgoing, and the reflection condition is
ẏ1� ẏ1�=−ẏ1. In the general case we assume the simplest
version of an inelastic bounce,

ẏ1 � ẏ1� = − �1 − f�ẏ1, �A10�

where 0� f �1 is the so-called coefficient of restitution. A
vanishing value of f represents elastic reflection, and f =1
corresponds to the case where all vertical momentum is dis-
sipated.

Equations �A9� and �A10� together give the reflection law

��

�̇̃

ẏ1

	 � ���

�̇̃

ẏ1�
	 = � �

�̇̃

− �1 − f�ẏ1
	

�y1 = y1� = 0, � � � � 2�� , �A11�

the change in energy being

� = E − E� =
f�2 − f�

2

�1ẏ1
2

�1 + �2 cos2 �
. �A12�

The energy loss is strongest, �= 1
2 f�2− f�ẏ1

2, when the bounce
is head on, �=3� /2.

In case mass 2 bounces off the floor, y2=0 and 0��
��, the formulas �A7�–�A12� remain the same except for
the replacements y1→y2, �1,2→�2,1, sin �→−sin �, and
cos �→−cos �.

The complete motion of the barbell is described by

ÿ = − 1 and �̈ = 0 �A13�

as long as both y1	0 and y2	0, and by the above reflection
laws if either y1=0 or y2=0.

3. Phase space structure: Poincaré section

Recall that the system has two parameters, the mass ratio
�1=1−�2 and the friction coefficient f , and that its phase
space has four dimensions, with configuration space S���

R�y� and momenta �p� , py�= ��1�2�̇ , ẏ��R2. Except for
f =0 �where E=const� there exists no constant of motion.
The points of minimum energy E=0, �� , �̇ ,y , ẏ�
= �0,0 ,0 ,0� and �� ,0 ,0 ,0�, are the two possible final states
1 and 0, respectively. Together they attract the entire phase
space, except for the boundary between their basins of attrac-
tion. This boundary is formed by the three-dimensional �3D�

JAN NAGLER AND PETER RICHTER PHYSICAL REVIEW E 78, 036207 �2008�

036207-4



stable manifolds of the two unstable fixed points
�� , �̇ ,y , ẏ�= �� /2,0 ,�1 ,0� with energy E=�1, and
�� , �̇ ,y , ẏ�= �3� /2,0 ,�2 ,0� with energy E=�2. These points
correspond to the barbell standing upright with either mass 2
or mass 1 touching the ground, “not knowing” which way to
fall over. Their stable manifolds consist of the �y , ẏ� planes
defined by �� , �̇�= �� /2,0�, with E	�1, and �� , �̇�
= �3� /2,0� with E��2, plus the sets of initial conditions
which are drawn towards these planes. The aim of our analy-
sis is to understand how these manifolds partition the phase
space into the two basins of attraction.

A convenient way of studying this phase space structure is
in terms of suitably chosen Poincaré sections, thereby reduc-
ing the system’s dimension by one. A section condition is
“suitable” if

�a� every orbit intersects it sufficiently many times to re-
veal its nature and its final state,

�b� the surface of section can be represented in a one-to-
one projection.

An obvious choice of this kind is to consider the barbell’s
motion at the moments immediately after it bounces off the
floor, i.e., at y1=0 with ẏ1	0 �����2�� and y2=0 with
ẏ2	0 �0�����. This condition is met infinitely many
times by every orbit, hence it is complete in the sense defined
in �13�. It produces a 3D surface of section through the 4D
phase space. But which coordinates do we choose to repre-
sent this surface? We might think of �� , �̇ ,E�, but note from
Eq. �A7� that a given set �� , �̇ ,E� together with y1=0 ��
���2�� would not in general allow us to determine a
unique ẏ1	0 �there may be two such values, or none�. How-
ever, if we use the coordinates �� , �̇̃ ,E�, then Eq. �A7� be-
comes

E =
1

2

�1

�1 + �2 cos2 �
ẏ1

2 +
1

2
�2��1 + �2 cos2 ���̇̃2 − �2 sin � ,

�A14�

which shows that ẏ1	0 is indeed uniquely determined by
�� , �̇̃ ,E�. The corresponding initial conditions �� , �̇ ,y , ẏ�
right after the bounce are then given with

�̇ = �̇̃ +
cos �

�1 + �2 cos2 �
ẏ1, y = − �2 sin � ,

ẏ = ẏ1 − �2�̇ cos � , �A15�

and similarly for bounces of mass 2 if 0����.
The 3D surface of section P is that part of S���
R��̇̃�


R�E� where E�0 and ẏ1,2
2 �0; using Eq. �A14� and the

corresponding equation for reflection of mass 2, we find that
the allowed values of �̇̃, at given E �see Fig. 3�, are restricted
by

0 � �̇̃2 �
2

�2

E + �2 sin �

�1 + �2 cos2 �
�� � � � 2�� ,

0 � �̇̃2 �
2

�2

E − �1 sin �

�1 + �2 cos2 �
�0 � � � �� . �A16�

The Poincaré map P :P→P is the mapping

��

�̇̃

E
	 � ���

�̇̃

E�
	 = P��

�̇̃

E
	 = R � F��

�̇̃

E
	 = R���

�̇̃

E
	 ,

�A17�

where F describes the flight �A13� to the next bounce, and R
the reflection �A11� �or the corresponding law if y2=0�. No-
tice from the previous section that the new coordinates
��� , �̇̃�� are determined by the flight F alone, while the en-
ergy changes only in the reflection, according to Eq. �A12�.

The stable equilibria �� , �̇̃ ,E�= �0,0 ,0�¬S1 and
�� ,0 ,0�= :S2 belong to P, as do the unstable equilibria
�� , �̇̃ ,E�= �� /2,0 ,�1�¬U1 and �3� /2,0 ,�2�¬U2. The
stable manifolds W1,2�P of U1,2 are 2D surfaces which
contain the lines �� /2,0 ,E��1� and �3� /2,0 ,E��2�, plus
all points which are attracted to these lines under P.

Let us think of P as being made up of �� , �̇̃� slices at
constant E. In case the collision is elastic, these slices are
invariant planes, and we may study the Poincaré map at fixed
energy. Since P is not smooth at �=0 or �, the points
�0,0 ,E� and �� ,0 ,E� do not exhibit the typical elliptic char-
acter of stable points in analytic maps. However, the unstable
points �� /2,0 ,E�¬P1 �E	�1� and �3� /2,0 ,E�¬P2 �E
	�2� are typical hyperbolic points, and we may consider the
linearized map in their neighborhoods. To do so we start with
an initial condition
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FIG. 3. �Color online� Accessible regions for the surface of sec-
tion given by Eq. �A16� for five energy levels. The region in black
is accessible for all examples. For E=0.3 green �gray� regions be-
come accessible, too, for E=0.5 the regions in cyan �gray�, for E
=0.7 the yellow regions �gray�, and finally, for E=0.9 also the blue
�gray� regions. The region in red �gray� is inaccessible for all these
energy levels.
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„��0�, �̇̃�0�,E… = �3�/2 + �,
,E� , �A18�

assuming � and 
 to be infinitesimally small, and determine
��, 
� in

„��t�, �̇̃�t�,E… = �3�/2 + ��,
�,E� , �A19�

to linear order in �, 
, where t is the time of the next bounce.
Using Eq. �A14� we obtain ẏ1�0�=
2�E−�2�+O�2�, where
O�2� means second order in �� ,
�, and with Eq. �A15� we
obtain the initial values

�̇�0� = 
 +
�

�1


2�E − �2� + O�2� ,

y�0� = �2 + O�2� ,

ẏ�0� = 
2�E − �2� + O�2� . �A20�

The flight between the bounces is then given by y�t�=y�0�
+ ẏ�0�t− 1

2 t2 and ��t�=��0�+ �̇�0�t. The time t of the next
bounce is determined from y�t�=−�2 sin ��t� which we solve
by expanding the right-hand side to second order in t: t
=2ẏ�0�+O�2�. This implies �omitting the higher orders�

��t� = ��0� + 2ẏ�0��̇�0�, ⇒ �� = � + 2ẏ�0��̇�0� ,

ẏ�t� = − ẏ�0� = − 
2�E − �2� = ẏ1�t� ,

�̇̃�t� = �̇�0� −
��

�1
ẏ1�t�, ⇒ 
� = �̇�0� +

��

�1
ẏ�0� .

�A21�

Inserting �̇�0�=
+ ẏ�0�� /�1 on the right-hand side of the
equations for �� and 
�, we finally obtain the mapping

���


�
� = � 1 + �4/�1��E − �2� 2
2�E − �2�

�2/�1�
2�E − �2��1 + �2/�1��E − �2�� 1 + �4/�1��E − �2�
���



� . �A22�

Since both �� and 
� do not change upon reflection, this
already describes the full Poincaré map �as E�=E�. Nothing
in these arguments needs to be modified if dissipation is
taken into account. The only change happens when energy is
lost in the reflection process; using Eq. �A12� we see that Eq.
�A22� needs to be complemented by

E� = �2 + �1 − f�2�E − �2� , �A23�

which means the Poincaré map takes us from the energy slice
E to the energy slice E�, which approaches �2 in a geometric
manner.

The eigenvalues �s,u �stable and unstable, respectively�
and eigenvectors of the mapping �A22� are

�s,u = 1 +
4

�1
�E − �2� �

2

�1


2�E − �2���1 + 2�E − �2�� ,

�A24�

��



� � � �1

�
�1 + 2�E − �2�
� , �A25�

the upper �lower� sign referring to the stable �unstable� di-
rection. They do not depend on the friction parameter f
but on the energy. As E→�2 they are �up to a factor�
�� ,
�= ��1 , �1 /
�1�, and as E→� we have
�� ,
�→ ��1 , �
2E�.

According to the stable and unstable manifold theorem
the manifolds W1,2

s,u are tangent to these eigenvectors. The
unstable manifolds W1,2

u can be obtained by forward iteration

of little segments on the unstable eigendirections, the stable
manifolds W1,2

s by backward iteration of little segments on
the stable eigendirections. The manifolds W1,2

u extend down
to the stable fixed points at energy E=0 whereas the stable
manifolds W1,2

s exist only at energies E	�1,2, respectively.
The stable manifolds represent the boundaries between the
basins of attraction of the final states 1 and 0.

4. Final state diagrams

Given the complexity of the motion, it appears impossible
to give a rendering of the three-dimensional surface of sec-
tion P and its division by the two-dimensional manifolds
W1,2

s,u . Therefore we propose to consider final state diagrams,
i.e., �� , �̇̃� sections at constant energy E where each point is
given a color according to whether it is attracted to the final
state 1 �cyan� or 0 �yellow�, see Fig. 4 for E=1.0 and five
different values of f . Obviously, if E�min��1 ,�2�, then the
upright positions �̇=� /2 or 3� /2 cannot be reached, hence
the final state is uniquely determined. In the following we
assume �1=�2=1 /2, so when E�1 /2 the final state is 1 if
−� /2���� /2 and 0 if � /2���3� /2. In the final state
diagrams of Fig. 4 the colors also reveal the number of
bounces necessary to reach E�1 /2: they become darker as
this number increases. We also show the stable and unstable
eigendirections of the hyperbolic points P1 and P2. The
stable directions agree with the separation of colors, i.e., with
the boundaries of the two basins of attraction, even a consid-
erable distance away from P1,2. At high values of f as, e.g.,
at f =0.4, the basin boundaries exhibit a rather smooth and
clear-cut character. However, as f decreases they become
more and more fractal-like.
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FIG. 4. �Color online� Final state diagrams for a �� , �̇̃� slice at E0=1.0. Friction values: �a� f =0.01, �b� f =0.05, �c� f =0.1, �d� f =0.2, and
�e� f =0.4. A point is given the color cyan and/or gray �yellow and/or gray� if upon iteration of the Poincaré map it ends up in the state 0 �or
1�; the darkness reflects the number of iterations necessary for E to become less than 1 /2 �see insets at the upper right for scales�.

HOW RANDOM IS DICE TOSSING? PHYSICAL REVIEW E 78, 036207 �2008�

036207-7



Physical intuition suggests to define yet another kind of
final state diagram. It is derived from the Poincaré section
condition ẏ=0 and ÿ�0, i.e., we consider those points of a
trajectory where the center of mass reaches a local maxi-
mum. The 3D section of phase space so defined may be
parametrized by the coordinates �� , �̇ ,y�, and from Eq. �A6�
we see that the 2D subsets E=const are parabolas in the
��̇ ,y� plane, independent of � except for the fact that the
bouncing conditions y1	0 and y2	0 require y	−�2 sin �
�����2�� and y	�1 sin � �0�����. A given point
�� , �̇ ,y� �together with ẏ=0 immediately defines an initial
condition, and the Poincaré map is defined by three steps: �i�
downward flight ��t�=��0�+ �̇�0�t and y�t�=y�0�− 1

2 t2, �ii�
reflection at the bottom y1=0 or y2=0, �iii� upward flight
until the condition ẏ�t�=0 is met again. If we took coordi-
nates �� , �̇ ,E�, a similar analysis as the above might be per-
formed in terms of �� , �̇� slices at constant energy, with a
decrease of E according to Eq. �A12� according to where the
bounce took place. However, the physically more directly
appealing coordinates �� , �̇ ,y� suggest to look at �� , �̇�
slices with fixed y=h. This would not be suitable for the
definition of a meaningful Poincaré map because the values y
change at each iteration, even at zero dissipation f =0, and if
f 	0 there is a general tendency for the maximum height to
decrease so that a given slice would only be met a finite
number of times.

This argument does not prevent us from looking at final
state diagrams in a �� , �̇� slice with initial value y=h. Here
we consider a set of initial conditions where the barbell starts
at height h with no vertical velocity, but any combination of
�� , �̇��S���
R��̇�; the energy E�h as given by Eq. �A6�
becomes arbitrarily large as �̇2 increases. In order to see how
the invariant manifolds of the lines above �� , �̇ ,y�
= �� /2,0 ,�1� and �3� /2,0 ,�2� intersect these slices, we
consider an initial condition �� , �̇ ,y�= �3� /2+ �̄ , 
̄ ,h� with
infinitesimal ��̄ , 
̄� and determine where the trajectory
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FIG. 5. �Color online� Final state diagram at h=0.6 for the low
friction parameter f =0.01. All scales and ranges are the same as in
Fig. 2.
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2, �b� 3.5-fold magnification of the region marked in �a�, �c� 14-fold
magnification.
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�̄�t� = �̄ + 
̄t, y�t� = h −
1

2
t2 �A26�

intersects the Poincaré surface y1=0, ẏ1	0. An elementary
calculation, to linear order in ��̄ , 
̄� gives t=
2�h−�2� and,
with �̇̃ª
 as before,

���t�

�t�

� = � 1 
2�h − �2�

�1/�1�
2�h − �2� 1 + �2/�1��h − �2�
���̄


̄
� .

�A27�

From Eq. �A25� we know the tangent vectors to the invariant
manifolds in the Poincaré surface y1=0, ẏ1	0. Therefore,
inverting Eq. �A27� with (��t� ,
�t�) along the eigendirec-
tions, we obtain the tangent vectors to the invariant mani-
folds in the ��̄ , 
̄� plane:

��̄


̄
� � �
�1 + 2�h − �2�

�1
� . �A28�

Again the upper sign refers to the stable, the lower to the
unstable direction. �If the bounce occurs at y2=0, �1 and �2
must be exchanged.� In the linear neighborhood of the points

�� , �̇�= �� /2,0� and �3� /2,0�, these directions depend on E
but not on the friction parameter f; they are symmetric with
respect to the � axis. The linear approximation to the invari-
ant manifolds seems to be good at least up to their first in-
tersection in the points P3,4= �� ,� / �2
�1+2�h−�2��� as
Fig. 2 and Fig. 5 illustrate.

One might be tempted to interpret P3,4 in Fig. 5 as het-
eroclinic points, but that becomes meaningful only in the
limit of vanishing f: their forward images tend to lie in slices
with lower values of y whereas the backward images tend to
have larger y. Nevertheless it is obvious that the diagrams
reveal some degree of heteroclinic entanglement. Its depth in
scale, however, is limited by friction. The two blowups in the
final state diagram, Fig. 6, show that upon sufficient magni-
fication the basin boundaries become smooth. The situation
is similar to that of a steel pendulum over three magnets, if
air drag is taken into account �10,11�; there the limits to
fractality were analyzed in �12�.

The final state diagrams of Figs. 2, 5, and 6 illustrate how
regions of order �predictability� and chaos �strong depen-
dence on initial conditions� depend on initial conditions and
the parameter f �the parameter h might also be considered,
but we took h=0.6 in all cases�.
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